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Abstract: The current study defines and examines the concept of arithmetic con-
tinuity in quasi-cone metric spaces. This work introduces several new concepts,
including forward and backward arithmetic convergence, arithmetic ff -continuity,
fb-continuity, forward and backward arithmetic compactness, and uniform conti-
nuity. We have determined the conditions under which the uniform limit of an
arithmetic ff -continuous function is again an arithmetic ff -continuous function.
In quasi cone metric spaces, certain arithmetic compactness results are also proved.
We have also proved some interesting results pertaining to these concepts.

Keywords and Phrases: Arithmetic continuity, arithmetic convergence, arith-
metic compactness.

2020 Mathematics Subject Classification: 40A35 40A05, 26A15.

1. Introduction
If symmetric condition is eliminated from the definition of metric (see [2, 5,

12, 13, 16]) then the distance function is said to be quasi metric. Quasi metric
has a variety of applications in pure and applied mathematics, as well as material
science (see [4]). Various definitions of quasi cone metric have been given by various
authors (see, for example, [1]). Since then, much study has been conducted on the
quasi cone metric, particularly on fixed point theory (see, for example [2]). The
notion of arithmetic convergence was introduced by Ruckle [14] in the form of a
sequence {xn} defined on the set of natural numbers. The sequence {xn} is said to
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be arithmetic convergent if for every u > 0 there exists m ∈ Z such that for each
n ∈ Z, |xn− x<n,m>| < u, where the greatest common divisor of n and m is denoted
as < n,m > . Another definition of arithmetic convergence given by Cakalli in
[3] as: a sequence {xn} is called arithmetically convergent if for each u > 0 there
exists m0 ∈ Z such that for all n,m ∈ Z that satisfy < n,m >≥ m0, we have
|xn − x<n,m>| < u. For comprehensive details on arithmetic continuity, arithmetic
convergence, ideal convergent sequences and related notions one can refer [3, 6, 7,
8, 10, 11, 17, 18, 21, 22]. In this paper, the concepts of forward and backward
arithmetic convergence in a quasi cone metric space are firstly introduced. These
concepts are used to define forward and backward arithmetic continuity in quasi
cone metric spaces which are further utilized to obtain some fascinating results.
The notion of forward and backward arithmetic compactness is also introduced.

2. Preliminaries
Throughout this paper, the partial order relation is denoted by ≤ .

Definition 2.1. [9] Let E ⊆ R be a Banach space. A set P contained in E is said
to be a cone if

(i) P is non-empty, closed and non-zero.

(ii) x, y are elements of P and s, t ∈ R≥0, then sx+ ty is an element of P.

(iii) the intersection of P and −P is {0}.

Throughout this paper we shall assume that P is a cone in a Banach space such
that int(P) denotes interior of P. Also, we shall denote closure of any set B as
Cl(B). A partial ordering relation ≤ on E in relation to P is defined as: x ≪ y if
and only if y − x is an element of intP, x ≤ y if and only if y − x is an element of
P. The partial ordering x < y symbolizes x ≤ y, x ̸= y.

Definition 2.2. [1] Let X be a non-empty set and define a mapping d : X×X → E
as follows:

(i) d(x, y) ≥ 0 for x, y ∈ X.

(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ X.

Then (X, d) is said to be a quasi cone metric space.
Further, we shall assume that (X, d) is a quasi cone metric space.

Definition 2.3. [15] Let {xn} be a sequence in X. The sequence {xn} is said to be
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forward convergent (resp. backward convergent) to x0 in X if for each u ≫ 0, u ∈ E
there exists N ∈ N so that for every n ≥ N, we have d(x0, xn) ≪ u (resp. d(xn, x0) ≪
u). We denote it as xn

f→ x0 (resp. xn
b→ x0).

Definition 2.4. [15] Let {xn} be a sequence in (X, d). Then the sequence {xn} is
said to be forward Cauchy (resp. backward Cauchy) if for each u ≫ 0, u ∈ E there
exists N ∈ N such that for each m ≥ n ≥ N, d(xn, xm) ≪ u (resp. d(xm, xn) ≪ u).

Definition 2.5. [19] (X, d) is said to be forward sequentially compact if each se-
quence in X has a forward convergent subsequence.

3. Main Results

Definition 3.1. Let {xn} be a sequence in X. Then {xn} is said to be forward arith-
metic convergent (resp. backward arithmetic convergent) if for every u ∈ E, u ≫ 0
there exists N ∈ Z such that d(x<n,m>, xn) ≪ u(resp. d(xn, x<n,m>) ≪ u), whenever

< n,m >≥ N, n,m ∈ Z. It shall be denoted as xn
amf→ x<n,m> (resp. xn

amb→ x<n,m>).

Hereafter, we assume that (X, dX) and (Y, dY) are two quasi cone metric spaces.

Definition 3.2. A function f from X to Y is said to be arithmetic ff−continuous

(resp. arithmetic fb−continuous) at a point x ∈ X if xn
amf→ x in (X, dX) implies

that f(xn)
amf→ f(x)(resp. f(xn)

amb→ f(x)) in (Y, dY).

Definition 3.3. A function f from X to Y is said to be uniformly continuous if
for each x, y ∈ X, u′ ∈ E′, u′ ≫ 0 there exists u ∈ E, u ≫ 0 if dX(x, y) ≪ u implies
that dY(f(x), f(y)) ≪ u′.

Note that forward uniform continuity and backward uniform continuity are
same.

Theorem 3.4. A function f from X to Y is arithmetic ff−continuous if f is
uniformly continuous.
Proof. Suppose that f is uniformly continuous and {xn} is a sequence in X that
is forward arithmetic convergent. Then for every u′ ∈ E′, u′ ≫ 0 there exists
u ∈ E, u ≫ 0 such that dY(f(x), f(y)) ≪ u′, whenever dX(x, y) ≪ u as f is uni-
formly continuous. Also, {xn} is forward arithmetic convergent in X. Then for above
u ≫ 0, there exists n0 ∈ N such that for all m,n ∈ Z that satisfy < n,m >≥ n0,
we have dY(f(x<n,m>), f(xn)) ≪ u′ when dX(x<n,m>, xn) ≪ u for each n. There-
fore, {f(xn)} is forward arithmetic convergent sequence. Hence f is arithmetic
ff−continuous.

Definition 3.5. A sequence {fn} from X to Y is said to be forward arithmetic
convergent (resp. backward arithmetic convergent) if for every u′ ∈ E′, u′ ≫ 0
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and for every x ∈ X there exists n0 ∈ N such that for each m,n ∈ Z that satisfy
< m,n >≥ n0, we have dY(f<n,m>(x), fn(x)) ≪ u′(resp. dY(fn(x), f<n,m>(x)) ≪ u′).
Theorem 3.6. Let (X, dX) and (Y, dY) be two quasi cone metric spaces. If {fn}
is a sequence of forward arithmetic convergent functions from X to Y and x0 ∈ X
so that fn(x) tends to yn as x tends to x0, then the sequence {yn} is also forward
arithmetic convergent.
Proof. By the definition of forward arithmetic convergence, for u′ ∈ E′, u′ ≫ 0
there exists n0 ∈ N such that for every m,n ∈ Z that satisfy < n,m >≥ n0 and for
each x ∈ X, we have dY(f<n,m>(x), fn(x)) ≪ u′. Fix n,m and suppose x tends to
x0, we have dY(y<n,m>, yn) ≪ u′. Therefore, {yn} is forward arithmetic convergent.
This proves the theorem.

Theorem 3.7. If {fn} is a sequence of backward arithmetic convergent functions
from X to Y and x0 ∈ X so that fn(x) tends to yn as x tends to x0, then the sequence
{yn} is also backward arithmetic convergent.
Proof. The proof is omitted as it follows trivially from Theorem 3.6.

Theorem 3.8. If {fn} is a sequence of arithmetic ff−continuous functions from
X to Y, forward convergence is equivalent to backward convergence in Y and {fn}
is forward convergent to f uniformly. Then f is arithmetic ff−continuous.
Proof. Choose u′ ∈ E′, u′ ≫ 0. Suppose that {xn} is a forward arithmetic conver-
gent sequence in X. Since {fn} is uniformly forward convergent to f, there exists
N ∈ N such that dY(f(x), fn(x)) ≪ u′

3
for all n ≥ N and x ∈ X. Particularly,

fn(x<n,m>) is forward convergent to f(x<n,m>) and hence fn(x<n,m>) is backward
convergent to f(x<n,m>). Therefore, there exist M ∈ N such that dY(fn(x<n,m>),
f(x<n,m>)) ≪ u′

3
for all n ≥ M. Let N′ = max .(N,M). Also, {fn} is a se-

quence of arithmetic ff−continuous functions. Particularly, fN′ is arithmetic
ff−continuous function. Since forward convergence and backward convergence in
Y are equivalent. Then fN′ is also arithmetic fb−continuous. Therefore, there
exists n0 > N and u ∈ E, u ≫ 0 such that dX(x<n,m>, xn) ≪ u implies that
dY(fN′(xn), fN′(x<n,m>) ≪ u′

3
∀m,n ∈ N such that < n,m >≥ m0. Moreover, for

dX(x<n,m>, xn) ≪ u and < n,m >≥ m0, we see that

dY(f(xn), f(x<n,m>)) ≤ dY(f(xn), fN′(xn))

+ dY(fN′(xn), fN′(x<n,m>)) + dY(fN′(x<n,m>), f(x<n,m>))

≪ u′

3
+

u′

3
+

u′

3
= u′.

Hence f is arithmetic fb−continuous. As forward convergence is equivalent to
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backward convergence f is also arithmetic ff−continuous. This proves the theo-
rem.

Theorem 3.9. Let forward convergence in Y is equivalent to backward conver-
gence. Then The set of all arithmetic ff−continuous functions from X to Y is a
closed subset of all continuous functions from X to Y. That is, Cl(Amff )(X,Y) =
Amff (X,Y). Here Amff (X,Y) is the set of all functions from X to Y that are arith-
metic ff−continuous.
Proof. Suppose f ∈ Cl(Amff )(X,Y). Then there is a sequence {fn} in Amff (X,Y)
such that {fn} is forward convergent to f. Let u′ ∈ E′, u′ ≫ 0. Consider a forward
arithmetic convergent sequence {xn} in X. As fn is forward convergent uniformly to
f. Then for all x ∈ X there exists N1 ∈ N such that dY(f(x), fn(x) ≪ u′

3
, ∀n ≥ N1.

Particularly, fn(x<n,m>) is forward convergent to f. Also, fn(x<n,m>) is backward
convergent to f as forward convergence is equivalent to backward convergence.
Hence there exists N2 ∈ N such that dY(fn(x<n,m>), f(x<n,m>)) ≪ u′

3
∀n ≥ N2.

Choose N = max .{N1,N2}. Also, {fn} is arithmetic ff−continuous. Particularly,
fN is arithmetic ff−continuous. Since forward convergence in Y is equivalent to
backward convergence we see that fN is also arithmetic fb−continuous. Hence
there exists m0 > N and u ∈ E, u ≫ 0 such that dX(x<n,m>, xn) ≪ u implies
that dY(fN(xn), fN(x<n,m>)) ≪ u′

3
, ∀ m,n ∈ Z and < m,n >≥ m0. Therefore, for

dX(x<n,m>, xn) ≪ u and < m,n >≥ m0, we get

dY(f(xn), f(x<n,m>)) ≤ dY(f(xn), fN(xn))

+ dY(fN(xn), fN(x<n,m>)) + dY(fN(x<n,m>), f(x<n,m>))

≪ u′

3
+

u′

3
+

u′

3
= u′.

Hence f is arithmetic fb−continuous. Also f is arithmetic ff−continuous as for-
ward convergence is equivalent to backward convergence. Therefore, Amff (X,Y)
contains f. Hence the proof.

Definition 3.10. A function f : X → Y is said to be forward (cAC)−continuous
if it maps forward convergent sequences in X to forward arithmetic convergent se-
quences in Y. That is, {f(xn)} is a forward arithmetic convergent sequence in Y,
whenever {xn} is a forward convergent sequence in X.

Theorem 3.11. Let forward convergence in Y is equivalent to backward conver-
gence and {fn} be a sequence consisting of forward (cAC)−continuous functions
from X to Y such that {fn} is forward convergent to f uniformly. Then f is for-
ward (cAC)−continuous.
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Proof. Let u′ ∈ E′, u′ ≫ 0 and consider a sequence {xn} in X that is for-
ward convergent. As {fn} is forward convergent to f uniformly, then there ex-
ists N1 ∈ N such that dY(f(x), fn(x)) ≪ u′

3
, ∀ x ∈ X and n ≥ N1. Particularly,

{fn(xn)} is forward convergent to f. Since forward convergence is equivalent to back-
ward convergence. Then {fn(xn)} is backward convergent to f. Hence there exists
N2 ∈ N such that dY(fn(xn), f(xn)) ≪ u′

3
, ∀ n ≥ N2. Take N = max{N1,N2}.

Since fn is forward (cAC)−continuous. Then there exists m0 > N such that
dY(fN(x<n,m>), fN(xn)) ≪ u′

3
, ∀ x ∈ X and m,n ∈ Z such that < m,n >≥ m0.

Hence we have

dY(f(x<n,m>), f(xn))

≤ dY(f(x<n,m>), fN(x<n,m>)) + dY(fN(x<n,m>), fN(xn)) + dY(fN(xn), f(xn))

≪ u′

3
+

u′

3
+

u′

3
= u′.

Hence the proof.

Theorem 3.12. Let forward and backward convergence in Y are equivalent. Then
the set of all forward (cAC)−continuous functions from X to Y is a closed subset
of set of all functions from X to Y that are continuous.
Proof. The proof is omitted as it follows trivially from Theorem 3.11.

Theorem 3.13. Composition of two forward arithmetic ff -continuous functions
in a quasi cone metric space (X, d) is arithmetic ff -continuous.
Proof. Let g, h be two forward arithmetic ff -continuous functions. We shall
show that g ◦h is again an arithmetic ff -continuous function. For this, let {xn} be
a forward arithmetic convergent sequence in X. Since h is arithmetic continuous.
Then {h(xn)} is forward arithmetic convergent. Moreover, g is also arithmetic ff -
continuous. Then {g(h(xn))} is also forward arithmetic convergent. Hence g ◦ h is
also arithmetic ff -continuous. This proves the theorem.

Definition 3.14. A set B ⊂ X is said to be forward (resp. backward) arithmetic
compact if every sequence in B admits forward (resp. backward) arithmetic con-
vergent subsequence.

Theorem 3.15. Let B ⊂ X be forward arithmetic compact and f : X → Y be an
arithmetic ff−continuous function. Then f(B) is also forward arithmetic com-
pact.
Proof. Let {yn} be a sequence in f(B). Then yn = f(xn) for some xn ∈ X and
n ∈ N. Also, {xn} has a forward arithmetic convergent subsequence {xnl

}. By the
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arithmetic ff−continuity of f we see that f(xn) has a forward arithmetic conver-
gent subsequence f(xnl

). This proves that f(B) is forward arithmetic compact.

Theorem 3.16. Let B ⊂ X be backward arithmetic compact and f : X → Y
be an arithmetic fb−continuous function. Then f(B) is also backward arithmetic
compact.
Proof. The proof is omitted as it follows trivially from Theorem 3.15.

Theorem 3.17. Let B ⊂ X be forward arithmetic compact. Then any closed
subset of B is forward arithmetic compact.
Proof. Let B ⊂ X be forward arithmetic compact and A be a closed set con-
tained in B. Consider a sequence {xn} in A. Then {xn} is a sequence in B. Also,
the sequence {xn} has a forward arithmetic convergent subsequence {xnl

} as B is
forward arithmetic compact. Moreover, A is closed. Then the sequence {xn} in A
has a forward arithmetic convergent subsequence in A. Hence the proof.

Theorem 3.18. Let B ⊂ X be backward arithmetic compact. Then any closed
subset of B is backward arithmetic compact.
Proof. The proof is omitted as it follows trivially from Theorem 3.17.

4. Conclusion
In this paper, a new notion of arithmetic continuity in quasi cone metric spaces

is introduced. The notions of uniform continuity, forward (cAC)−continuous func-
tions, arithmetic ff -continuity, arithmetic fb-continuity, forward and backward
arithmetic compactness are also presented. We established that a uniformly con-
tinuous function is arithmetic ff-continuous in the context of quasi cone metric
spaces. A result pertaining the uniform limit of a sequence of arithmetic ff -
continuous functions is investigated. Furthermore, certain characteristics of quasi
cone metric spaces are deduced concerning their forward and backward arithmetic
compactness. In this space, we shall investigate several new topological and alge-
braic properties.
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